
The tool of thought for software solutions

Parallel Language
Features

Dyalog version 19.0

Dyalog Limited

Minchens Court, Minchens Lane
Bramley, Hampshire

RG26 5BH
United Kingdom

tel: +44(0)1256 830030

fax: +44 (0)1256 830031
email: support@dyalog.com

http://www.dyalog.com

Dyalog is a trademark of Dyalog Limited
Copyright  1982-2023

mailto:support@dyalog.com

Dyalog is a trademark of Dyalog Limited
Copyright  1982 - 2023 by Dyalog Limited.
All rights reserved.

Parallel Language Features User Guide

Isolate version 1.0.1454
Dyalog Version 19.0
Document Revision: 20230714_190

Unless stated otherwise, all examples in this document assume that (⎕IO ⎕ML) ← 1

No part of this publication may be reproduced in any form by any means without the prior written
permission of Dyalog Limited.

Dyalog Limited makes no representations or warranties with respect to the contents hereof and
specifically disclaims any implied warranties of merchantability or fitness for any particular purpose.
Dyalog Limited reserves the right to revise this publication without notification.

email: support@dyalog.com
https://www.dyalog.com

TRADEMARKS:

Raspberry Pi is a trademark of the Raspberry Pi Foundation.
JavaScript™ is a registered trademark of Oracle and/or its affiliates.
UNIX® is a registered trademark in the U.S. and other countries, licensed exclusively through X/Open
Company Limited.
Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.
Windows® is a registered trademark of Microsoft Corporation in the U.S. and other countries.
macOS® and OS X® (operating system software) are registered trademarks of Apple Inc. in the U.S. and
other countries.

All other trademarks and copyrights are acknowledged.

Contents

1 INTRODUCTION . 1
1.1 Release Notes.. 1

2 PHILOSOPHICAL PREAMBLE . 3
2.1 APL is a Parallel Notation .. 3
2.2 Automatic Parallelisation .. 3
2.3 Explicit Parallelisation ... 4

3 INTRODUCIN G FUTURE S AND ISOLATES . 5
3.1 Isolates .. 5
3.2 Futures .. 6
3.3 Parallel Operator ... 7

4 THE VE RSION 14.X IMPLEMENTATION . 8
4.1 Parallel Each .. 8
4.2 Explicit or Persistent Isolates .. 10
4.3 Blocking ... 10
4.4 Errors in Asynchronous Expressions ... 11
4.5 Tracking the Status of Asynchronous Expressions .. 12
4.6 Interrupting Asynchronous Expressions ... 13
4.7 Debugging Asynchronous Expressions .. 14

5 CALLING BACK FROM ISOLATE S . 16
5.1 Calling Back to the Parent ... 16
5.2 Call-backs versus Interrupts .. 17
5.3 Calling From One Isolate to Another ... 17

6 ISOLATE PROCESSE S . 19
6.1 isolate.State .. 19
6.2 Limiting the number of Isolates per Process ... 19
6.3 Changing the number of Processes ... 20
6.4 Running Isolate Servers ... 20
6.5 Using an Isolate Server .. 21
6.6 Combining Local and Remote Isolates .. 21

7 DIFFE RENCES BE TWEEN NAME SPACES AN D ISOLATE S . 23
7.1 File Ties are not shared with Isolates .. 23
7.2 Namespace “Refs” and Isolates .. 23
7.3 Classes versus Isolates .. 24
7.4 Unexpected output of Shy Results .. 24
7.5 Function calls into Isolates must return results .. 24

8 OPTION SE TTIN GS . 25
8.1 drc ... 26
8.2 homeport and homeportmax ... 26
8.3 isolates .. 26

8.4 listen .. 26
8.5 maxws ... 26
8.6 onerror .. 26
8.7 processors ... 27
8.8 processes ... 27
8.9 workspace ... 27
8.10 runtime ... 27

9 FURTHE R READIN G . 28
9.1 Tools and Samples on GitHub ... 28
9.2 Serving Isolates from Your own Application Workspace 28
9.3 Topics Yet to Come ... 29

APPEN DIX A: FUN CTION AND OPE RATOR RE FE RE NCE . 30
A.1 Models of Future Primitives ... 30

isolate←ø init r←¤⍵ isolate.New ⍵ 30
f II ... f∥ isolate.ll ... 30
f IÏX ... f∥¨ isolate.llEach 30
f o_II ... ∘.(f∥) isolate.llOuter 30
f IIö ranks ... f∥⍤ranks isolate.llRank 31
f IIÐ ... f∥⌸ isolate.llKey 31

A.2 Isolate Server Management ... 31
r←AddServer address ports .. 31
r←isSlave ... 32
r←RemoveServer address ... 32
r←StartServer access .. 32

A.3 Configuration and Process State .. 33
r←Config property [value] .. 33
r←Reset 0 .. 33
r←State '' ... 34

A.4 State of Futures .. 35
r←Available name ... 35
r←Failed name .. 35
r←Running name .. 35
r←[null] Value name ... 35

APPEN DIX B: TROUBLESHOOTIN G . 36
B.1 “Normal” Errors .. 36
B.2 Initialisation and Communication Failures ... 36
B.3 Internal Errors .. 37

 Parallel Language Features

1 Introduction

This document describes proposals for two new primitives and a new type of array, designed
to allow APL developers to take advantage of using multiple processors to execute code in
parallel:

- The function “isolate” (¤) creates a special kind of namespace known as an isolate inside
which all APL language statements are executed in parallel with the main APL process.

- The monadic operator “parallel” (∥) derives a function that will execute the left operand
in an empty isolate.

- A new type of array known as a “future” is a pointer to the future result of an expression
currently being executed in an isolate. Futures can be passed around as function
arguments and as items of nested arrays, but will “block” any expression which actually
needs the value pointed to by the future.

Since Dyalog version 14.0, futures have been implemented as a new primitive array element
type. However, the isolate function and the parallel operator are provided as models which
are partly implemented in APL, provided in the distributed workspace ws\isolate.

Although the current implementation is "only a model", Dyalog Ltd. believes that the design is
essentially final. The code has remained unchanged for the last couple of releases. However,
at the moment, the performance of the model has been more than sufficient, and work on
other features have taken priority over a fully “primitive” implementation of futures and
isolates.

1.1 Release Notes
The following changes have been made to the future and isolate implementations since
version 14.0:

New features included in Dyalog version 14.1, May 2015

- Interrupts should now always interrupt application threads, rather than any of the
threads implementing the isolate model.

- Errors in application code will no longer suspend isolate handling threads, even when
“suspend threads on error” is enabled.

- Microsoft Windows only: Support for applications shipped as bound executables: If
isolates are used from a bound executable containing the isolate namespace, the
executable is re-launched as the host for isolate processes.

- The function isolate.isSlave returns 1 if the current process is an isolate “slave”
process. This is useful when the same workspace (or bound executable) is used as the
client application AND as the base for isolate processes.

- The workspace explorer no longer crashes when viewing isolates. This fix has also been
back ported to version 14.0. A future version may allow the viewing of the contents of
isolates, at present the explore will declare that there is no viewable content.

 Parallel Language Features 2

- The experimental feature described in the manual Dyalog Experimental Functionality –
Shared Code Files allows for faster initialisation of isolates which need to make use of
large code bases already in use by the parent process.

Features in the new isolate workspace released September 2014

- Under Microsoft Windows, the caption of suspended isolate processes is changed to help
identify the relevant process (see 4.7 on debugging).

- The StartServer function now takes a list of rules which filter the network addresses
of clients that are allowed to make use of the server (see section 6.4 on running Isolate
Servers).

 Parallel Language Features 3

2 Philosophical Preamble

This section contains a discussion of issues surrounding the parallelisation of APL code. If you
are looking to quickly get started with using futures and isolates, skip to section 3.

2.1 APL is a Parallel Notation
The APL language contains many language features which are potentially parallel, although
most implementations do not execute them in parallel:

- Most primitive functions work on arrays, performing operations on all the elements of
argument(s).

- Many classical primitive operators from APL or APL2 such as each (f¨), inner product
(f.g), outer product (∘.g), and some reductions (f/) and scans (f\), express repeated
and potentially parallel execution of one or more functions.

- New operators added to Dyalog APL more recently, such as rank (f⍤n), key (f⌸), and
even some uses of the power operator (f⍣g), also express potentially parallel operations.

- In Dyalog APL, the use of the dot to execute an expression within the scope of an array of
objects or namespaces, expresses potentially parallel execution (namespaces.foo).

Dyalog Ltd. intends to give high priority to implementing actual parallel execution of APL
language statements.

There are two main tracks to pursue:

- Automatic parallelisation, where the interpreter automatically infers that an APL
language statement can be parallelised, and decides to execute code in parallel when the
language processor believes this will improve the performance of an application.

- Explicit parallelisation, where the language provides new mechanisms that allow the
programmer to declare that certain parts of the application could or should be executed
in parallel.

2.2 Automatic Parallelisation
Given the number of parallel language constructs in the APL language, it might seem that
automatic parallelisation should be easy to implement. In fact, parallel execution of a number
of scalar dyadic functions on floating-point arguments was introduced in version 12.1 of
Dyalog APL, and some user applications did realise noticeable speed-ups. However, automatic
parallelisation of traditional APL expressions faces a number of significant challenges:

1) Most arguments are small: parallel execution has a set-up time to start parallel threads or
processes, and a synchronization cost when the results computed by separate processes
are coalesced into a single array result. In typical applications, the arguments to most
primitive functions only have a very small number of elements. Any potential speed-up
from parallel execution will be cancelled out by the setup cost.

2) Cost of memory access: although it is common for modern hardware to have multiple
cores, the memory cannot fully support many cores reading or writing significant volumes
of data simultaneously: a queue will form. Thus, operations which have a large number of

 Parallel Language Features 4

small operations on large quantities of data (such as adding or multiplying large arrays),
cannot be parallelized efficiently on current hardware due to memory access costs.

3) Side-effects: when operator expressions are applied to user-defined functions, those
functions can have side-effects. Many existing applications rely on the current order of
execution of operator expressions and would fail or produce incorrect results if user-
defined functions started executing in parallel.

Successful automatic parallelisation on existing hardware will require an APL language system
which is able to coalesce multiple primitive APL operations into larger units which can be
effectively executed in parallel – combined with an ability to detect that user-defined
functions are free from side-effects (in other words, a “compiler”).

Dyalog Ltd. is conducting and funding research into APL compilers and does expect to increase
the amount of automatic parallelisation that Dyalog APL supports. However, in the short term,
explicit parallelisation though futures and isolates promise to provide more “bang for the
buck” for the application developer.

2.3 Explicit Parallelisation
As mentioned in the previous section, it can be difficult for the APL engine to determine
whether parallelisation is both safe and worthwhile. However, in many cases the programmer
knows where the potential for significant parallel execution lies in an application, and is able
to identify sections of code that are free of side-effects (or have manageable side-effects) -
and represent enough work for the setup and synchronization costs to make parallel
execution worthwhile.

In the past, many languages have provided language extensions aimed at allowing parallel
processing1. These have typically depended on the programmer to make use of explicit
synchronization features such as semaphores, which allow threads to mutually exclude each
other from interfering with each other as they modify shared data, notify each other of
progress, and wait for one step to complete before a dependent task can be started. These
features are notoriously difficult to use and often give rise to deadlocks and other difficult-to-
detect defects in code, even when used carefully by quote trained professionals unquote.

The challenge is to come up with new language features which make it easy for APL users to
introduce parallelism without reducing the readability of the code – and without making the
application fragile and prone to synchronization of timing errors.

This has been the main design goal for futures and isolates.

1 Including Dyalog APL, which provides a spawn operator (&), the ⎕TGET/⎕TPUT/⎕TSYNC family of
system functions, and the :Hold … :EndHold control structure.

 Parallel Language Features 5

3 Introducing Futures and Isolates

Futures and Isolates are language extensions which are intended to provide the developer
with ways to express the existence of potentially parallel sections of code in a deterministic
fashion. Briefly:

- An isolate is a namespace which is semantically equivalent to a normal namespace,
except that expressions which are executed inside an isolate can run in parallel (in a
separate process) to the main application process2. The current proposal is to create
isolates using a new primitive function ¤ (isolate).

- A future is an array of unknown rank, shape and content, which is returned as the result
of any expression that is executed inside an isolate. Futures can be passed as arguments
to user-defined functions or “nested” to form arrays containing several futures, without
blocking (waiting for the isolate to produce a result). Arrays containing futures can be
subjected to structural transformations such as reshape or partitioned enclose, without
blocking. Blocking only occurs when one or more futures are passed to a function which
needs to know the actual value (for example, a mathematical primitive function).

Between them, futures and isolates make it straightforward to divide application code into
sections which can run in parallel: if one function requires the result of code which is still
executing in parallel, the dependent function will automatically wait until the data that it
needs is available.

3.1 Isolates
An isolate created using ¤ is very similar to a namespace created using ⎕NS. The contents of
an isolate can be referenced using the same dot notation that is used to refer to the contents
of a regular namespace. It is also possible for code running inside an isolate to refer back to
the parent space using the ## (Parent) symbol. However, isolates reside in separate processes
and do not share a common workspace with the main process, and this does introduce some
differences.

The most important differences between isolates and namespaces are the features that make
isolates a tool for simple implementation of parallel execution within an application:

- Any evaluation which occurs within an isolate is handled in a separate process: If more
than one isolate exists, execution can proceed independently within each isolate. If more
than one processor is available, expressions inside isolates will run in parallel with the
main process.

- An expression executed within an isolate immediately returns a future, without waiting
for the expression to finish execution. A future is a placeholder for an as yet un-computed

2 This is different from the threading that results from the use of the & (spawn) operator: These threads
all run inside a single APL process, and only one thread is actually running at any given time.

 Parallel Language Features 6

value (see section 3.2 for more information). The future automatically turns into a real
value when the expression produces a result.

- Errors and interrupts are treated differently: In particular, errors are not reported to the
calling process until the value is referenced. Note that this means that, if values are never
referenced, errors in the code that (would have) produced them will go un-detected.

A number of differences are due to the fact that the isolate is actually inside a separate
process. Although the contents – both code and data – are “only a dot away”, there are some
restrictions on making references between isolates (or they would not deserve the name).

- Because the isolate is running in a separate process, it does not share file ties or any
process-related handles or resources with its parent process3.

- Inside an isolate, the special symbol ## (aka “Parent”) refers to the root (#) of the parent
process - and not, as one might expect, the space inside which the isolate was created (as
would be the case for a normal namespace).

- Code running inside an isolate can only refer to spaces that are not contained within itself
via the root of the parent workspace (referenced using ##, as mentioned above). You
cannot pass a reference to something contained within one isolate to another isolate.

A handful of differences are due to the current implementation. These may disappear or
change as we collect feedback and the implementation improves and eventually becomes
completely integrated with the interpreter. Examples of these differences include:

- Expressions which produce a shy result when executed in a namespace will no longer be
shy when executed in an isolate, because a future was returned and the shy nature of a
result cannot presently be preserved by futures. For example: nsref.(X←42).

For about the differences between isolates and namespaces, see section 7.

3.2 Futures
A future is an array of unknown rank, shape and content, which is returned as the result of any
expression that is executed inside an isolate. Futures have the following characteristics:

• A future can be assigned to a variable, passed as the argument to a function or
operator, stranded together with other elements to form an array, or be inserted into
a nested array, while remaining a future (with unknown content).

• Arrays containing nested (enclosed) futures can be passed as arguments to user-
defined functions or operators, or subjected to primitive structural functions such as
reshape or compress, so long as no function which needs to know the shape or
content of the future is encountered.

• If a primitive or system function which needs to reference the contents of the future
is encountered, an attempt is made to display the future in the session, or pass it to
an external program such as a Microsoft.NET method or a shared library function, the

3 In fact, as we shall see later, an isolate could be running on a completely different machine, which
might not even be running the same operating system or be able to see the same file system as the
parent process.

 Parallel Language Features 7

current thread will suspend until the expression which produced the future either
produces the result, or the expression fails.

In other words, future results of expressions that are currently being executed inside one or
more isolates (which are running in separate processes) can be passed around an application
until the actual values are needed for the next computational step, at which point the code
(the thread) that needs it will automatically block until the value is available.

Together, isolates and futures are designed to make it straightforward to write applications
which contain sections that can run in parallel. No semaphores or special mechanisms are
required to synchronize the independent expressions: When a result that is being computed
asynchronously is required, the consumer of the result will simply wait until the value
becomes available.

3.3 Parallel Operator
Parallel (∥) is a monadic operator which returns a derived function which will immediately
return a future, and execute the operand function within an empty isolate; it provides a
mechanism for parallel execution of a function without the overhead of explicitly creating an
isolate using ¤.

The parallel operator is typically combined with each (¨), in which case the operand function is
invoked multiple times. For example, the elapsed time for the following expression should be
slightly more than 3 seconds (without the parallel operator, it would be roughly 12 seconds):

 ⎕DL ∥¨ 3 3 3 3
3.003 3.004 3.003 3.003

The temporary isolate is empty when the function starts running; the operand function may
create global names for its own use, but they will be discarded together with the temporary
isolate when execution completes.

 Parallel Language Features 8

4 The Version 14.x Implementation

The ability to deal with the new type of array known as a future is a primitive feature which
was introduced with Dyalog APL version 14.0, built-in to all primitive functions. However, the
mechanisms for the creation of isolates and the execution of expressions within them are
currently modelled in APL with the help of an undocumented I-Beam.

The model can be found in the distributed workspace ws\isolate, in the form of a
namespace called isolate, and a set of functions and operators that have been given
names that are intended to be similar to future primitive expressions. The following functions
and operators expose models of future primitive functions or operators:

Syntax

Primitive
Equivalent

Alternative Name

Description

ø arg ¤ arg isolate.New Creates a new isolate

f II f ∥ isolate.ll Parallel operator

f IÏ f ∥¨ isolate.llEach Equivalent of Parallel Each

f o_II ∘.(f∥) isolate.llOuter Parallel outer product

f IIö ranks (f∥)⍤ranks isolate.llRank Parallel rank operator4

f IIÐ (f∥)⌸ isolate.llKey Parallel key operator (see rank footnote)

In the rest of this document, most parallel examples will make use of the above shortcuts: In
particular, ø will be used in place of future ¤ primitive and IÏ in place of ∥¨. Note that
alternative, more traditional names are available for the names exposed in the root
namespace.

The isolate namespace also exposes a set of functions which can be used to set
configuration options, query the state of the isolate framework, start and use “remote” isolate
servers. These functions will be introduced in different sections of this document, and are
listed in Appendix A.

4.1 Parallel Each
A trivial example, which illustrates the potential of isolates very well, is the behaviour of
parallel invocations of the system function ⎕DL, which consumes almost no system resources,
but takes a fixed amount of elapsed time. In “normal” Dyalog APL:

 T←⎕AI ⋄ ⎕←⎕DL¨8⍴3 ⋄ ⎕←⎕AI-T
3.008 3.004 3.005 3.004 3.007 3.009 3.007 3.007
0 7125 24054 0

4 In the current model, to avoid blocking in order to “mix” the results into the complete result matrix, IIö (rank) and
IIÐ return nested arrays containing futures, which need a final “mix” to produce the same result that the primitive
operator would have returned. See Appendix A for details.

 Parallel Language Features 9

The second line of output shows that the elapsed time for this expression is very slightly more
than 24 seconds, which should be no surprise: the each operator applies the ⎕DL function
sequentially to each of the 8 elements in the right argument.

With futures and isolates, we are able to run the 8 delays in parallel using the operator named
IÏ, which represents the proposed primitive operator parallel used in conjunction with the
each operator: ∥¨:

 T←⎕AI ⋄ ⎕DL IÏ 8⍴3 ⋄ ⎕AI-T
3.002 3.002 3.002 3.004 3.004 3.003 3.004 3.003
0 3000 3051 0

We can see from the timings that there is a slight overhead due to the cost of creating the
isolates and communicating with them – a small number of milliseconds per function
invocation.

Calls to ⎕DL parallelise exceptionally well, since they consume virtually no resources – but
they are perhaps not THAT useful in practice. Let us examine what happens if we use a (very
slightly) more interesting example. Consider the following function which loops a given
number of times, does some fairly hard (if useless) work, and returns the number of elapsed
milliseconds as its result:

 ∇ r←loop n;work
[1] r←3⊃⎕AI
[2] :Repeat ⋄ n←n-1
[3] work←≢∪10000?10000
[4] :Until n≤0
[5] r←(3⊃⎕AI)-r
 ∇

Unlike ⎕DL, this function consumes a large amount of CPU time – it is in a tight CPU loop. Let
us repeat an experiment similar to the one above:

 T←⎕AI ⋄ loop¨ 4⍴1E4 ⋄ ⎕AI-T
2958 3036 3039 3002
0 12047 12040

 T←⎕AI ⋄ loop IÏ 4⍴1E4 ⋄ ⎕AI-T
6561 6621 6631 6611
0 5829 6664 0

The following Windows Task Manager screen shot shows the profiles of these two executions:
The first run taking 12 seconds at about 30% reported utilization, the second 6 seconds at
100%.

We can see that the parallel invocations come fairly close to running twice as fast, completing
the four calls to loop in 55% of the time (6.6 vs 12.0 seconds). This is not a bad result on the

 Parallel Language Features 10

machine where this was run, a fairly typical laptop of the current era – with a 1.6GHz Intel
Core i5-4200. The machine is reported as having 4 logical processors, but there are only two
independent cores.

4.2 Explicit or Persistent Isolates
When a function is invoked under one of the parallel operators, an empty isolate is created for
each function invocation, and the isolate is destroyed when execution completes. If you need
to create persistent state that needs to allow several function invocations to share the same
code or data, it makes sense to create one or more isolates ahead of time, and use them to
execute more than one expression.

Isolates are created using the function ø, which represents the future primitive function ¤.
The right argument can be a namespace to clone, or an empty vector to create an empty
namespace. For example:

 ns←⎕NS '' ⍝ Create an empty namespace
 ns.X←1 2 3 4 ⍝ Give the name X a value within the NS
 is1←ø '' ⍝ Create an empty isolate
 is1.X←5 6 7 8 9 ⍝ Give X a different value in the isolate
 is2←ø ns ⍝ Clone the namespace as another isolate
 isolates←is1 is2 ⍝ References to isolates can form an array
 isolates.(+/X) ⍝ Execute (+/X) in 2 isolates in parallel
10 35
 T←⎕AI ⋄ isolates.(⎕DL 3) ⋄ ⎕AI-T
3.003 3.003
0 3000 3010 0

Since the dot notation allows us to execute any expression within an isolate, we can also easily
transfer code to an isolate “on demand”. We can repeat the example with our loop function.

 isolates←isolates,ø¨'' ''⍝ Add another 2 isolates (total is 4)
 isolates.⎕FX ⊂⎕CR 'loop' ⍝ Fix loop function in each isolate
 loop loop loop loop
 T←⎕AI ⋄ isolates.loop 1E4 ⋄ ⎕AI-T
6714 6783 6801 6788
0 5890 6814 0

Performance note: calls to existing isolates are generally very slightly faster, since no isolate
needs to be created first. The above example happened to take a little longer runtime than
the earlier example using IÏ, but this will have been due to “other things going on” in the
background.

4.3 Blocking
An expression executed within an isolate immediately returns a future, while the expression
continues to execute in the background. Arrays containing futures can be manipulated using
structural primitives, and passed as arguments to user-defined functions. Your application will
only wait (or block) for the result if you encounter an expression which needs to know the
actual value of the future.

This is hard to illustrate in a printed document, so it is recommended that you perform the
following experiments in an APL session:

 delays←⎕DL IÏ 3 10 20 ⍝ Returns immediately
 2↑delays ⍝ Returns after about 10 seconds
3.002 10.006

 Parallel Language Features 11

 delays ⍝ Waits until 20 seconds have passed
3.002 10.006 20.021

As can be seen in the preceding example, each item of the resulting array is a completely
separate future, and blocking only occurs if you reference an item which has not yet been
produced.

In section 4.5, we will learn how to track the execution and know which values are now
available, in case we need to write applications which are guaranteed not to block (this might
be a requirement for an application which provides services to others and needs to remain
responsive at all times).

4.4 Errors in Asynchronous Expressions
If an asynchronous expression encounters an error, this is not revealed until an attempt is
made to use the value. In the following slightly convoluted example, we invoke a function
three times: the first function call will succeed, the second will fail with a DOMAIN ERROR
after approximately ten seconds, and the third with a LENGTH ERROR after about 30
seconds:

 reciprocals←5 10 30 {z←⎕DL ⍺ ⋄ 1 2÷⍵} IÏ 2 0 (3 4 5)
 ⎕DL 15 ⍝ Wait for more than ten seconds

 reciprocals
FUTURE ERROR: 11: DOMAIN ERROR: {z←⎕DL ⍺ ⋄ ÷⍵}
 reciprocals
 ∧

 reciprocals[1] ⍝ This is fine
0.5 1

 reciprocals[2] ⍝ This failed after 10 seconds
FUTURE ERROR: 11: DOMAIN ERROR: {z←⎕DL ⍺ ⋄ ÷⍵}
 reciprocals[2]
 ∧

 reciprocals[3] ⍝ Fails after 30 seconds
FUTURE ERROR: 5: LENGTH ERROR: {z←⎕DL ⍺ ⋄ 1 2÷⍵}
 reciprocals[3]
 ∧

 ⍪⎕DMX.(EN EM Message)
┌──────────────────────────────────┐
│86 │
├──────────────────────────────────┤
│FUTURE ERROR │
├──────────────────────────────────┤
│5: LENGTH ERROR: {z←⎕DL ⍺ ⋄ 1 2÷⍵}│
└──────────────────────────────────┘

Important points:

1) Although the first error occurred after 10 seconds, while the main process was performing
a (⎕DL 15), no error was reported at that time. The error is only when a reference is

 Parallel Language Features 12

made to a failed future. Note that this means that if you never reference the result, the
error will never be reported5.

2) If we are blocking on several futures, an error is reported as soon as the first one of them
fails.

3) Errors are directly associated with the corresponding future: Note that the errors
reported for item [2] and [3] are different (DOMAIN ERROR and LENGTH ERROR), and
that item [1] can be extracted despite the fact that the array contains failed futures.

4) Like any item of an array, a future can be replaced – see below.

5) All failures in asynchronous expressions signal a FUTURE ERROR, event number 86.
Information about the underlying error is provided in ⎕DMX.Message.

Beware: The exact format of the error messages produced by failures of asynchronous
expressions is quite likely to change as the implementation matures. It is recommended that
you write applications in a way that allows you to easily adapt to changes in error reporting.

As mentioned above, a future can be overwritten at any time - it is just an item of an array.
Thus, we can “repair” an array containing failed futures by replacing the failed future with any
value we like:

 reciprocals[2 3]←⊂'[failed]' ⍝ Overwrite the failed future
 reciprocals
 0.5 1 [failed] [failed]

If you overwrite a “live” future (where the isolate is still at work), the result of the
asynchronous expression will simply be discarded when it eventually completes.

Beware: Even if you overwrite a “live” future, the isolate will keep running until it has finished
the calculation that was launched. The isolate remains in a busy state, and will not be able to
process another expression until the current one has finished executing. There is currently no
way to stop an isolate from continuing execution of an asynchronous expression.

4.5 Tracking the Status of Asynchronous Expressions
It can be useful to know whether an array contains un-computed futures, in order to avoid
blocking. In particular, any code which needs to remain responsive in order to provide services
to others should try to avoid unexpected blocking. The isolate namespace provides four
functions to help you monitor the status of futures without the risk of blocking. The right
argument to each function must be the name of an array:

Function Return Value

Values An array of future values with the same size as the named array, with
unfulfilled futures replaced with the value given as the left argument.

Available A Boolean array with 1 marking values which are available.

Failed A Boolean array with 1 marking futures which have encountered errors.

Running 1s identify futures where the isolate is still running.

5 If a tree falls in the forest, and nobody is there, does it make a sound? In this case, the answer is ”no”.

 Parallel Language Features 13

For example:

 z←99, ⎕DL IÏ 3 6 9 ¯1
 ⎕DL 7 ⍝ Wait until an “interesting” point in time
 isolate.((¯1 Values'z'),(Available'z'),(Running'z'),⍪Failed'z')
99 1 0 0
 3.009 1 0 0
 6.015 1 0 0
¯1 0 1 0
¯1 0 0 1

Explanations:

Values: the first item (99) was never a future so the value is immediately available. 3.009
and 6.015 are the first two ⎕DL results. ¯1 is returned for “unfulfilled” futures.

Available: the first three values are available, the last two are not.

Running: the fourth item is a future which is still in process after 7 seconds (the ⎕DL 9).

Failed: the last item of z is a failed future, because ¯1 is not a valid argument to ⎕DL.

4.6 Interrupting Asynchronous Expressions
In version 14.1, interrupts should always be issued to application threads that are waiting for
future results, rather than interfere with the threads handling isolates. In both the two
examples below, an interrupt issued while waiting under v14.1 will simply cause a return to
the six-space prompt. The wait for the future is abandoned, and processing continues in the
background. If a new attempt is made to reference the future value, it will either succeed or, if
the value has not yet been produced, block again.

If similar expressions were used in a defined function, the wait would be cut short and an
interrupt would be signalled on the following line of code, in the same way as when using
⎕DL.

Version 14.0 Interrupt Handling
This section has been retained for users of v14.0 who happen to be reading the v14.1
documentation – and just in case v14.1 interrupt handling doesn’t always do what is intended.

In version 14.0, if you issue an interrupt, there will be a significant likelihood that it will be
caught by one of the threads which is waiting for a future result. In this case, you will be asked
to confirm whether you would like to continue waiting. In the first example below, we respond
Y, resumed waiting and received the result. At the second prompt we answered N: in this case
the future is treated in the same way as if the calculation had encountered an error.

 ⎕DL IÏ 3 6
ISOLATE: Interrupt - continue waiting (Y/N)? Y
3.003 6.009

 ⎕←z←⎕DL IÏ 3 6
ISOLATE: Interrupt - continue waiting (Y/N)? N
FUTURE ERROR: USER INTERRUPT 1002
 ⎕←z←⎕DL IÏ 3 6
 ∧

 isolate.Values 'z'
3.006 [Null]

 Parallel Language Features 14

The final result shows us that the first item of the result had been produced before we
interrupted the wait.

Note that interrupting a wait for a future does NOT interrupt the code running within the
isolate. The computation will continue and the result, when it is available, will be discarded. In
the above example, the second element of z will remain a future forever. Since calls to
isolates are processes sequentially, the next calculation will be held in a queue until the
previous function call is completed.

In version 14.1, interrupts will not impact the processing of future results: The second
element of z will eventually be filled in, if z still exists at that time.

4.7 Debugging Asynchronous Expressions
As we have seen, the default behaviour is to trap all errors occurring within expressions that
are executed in an isolate, and return the error to the calling environment:

 ⎕FX 'R←A CALC B' 'R←A÷2×B'
 1 CALC 2
0.25
 1 CALC IÏ 2 3 0
FUTURE ERROR: 11: DOMAIN ERROR: CALC[1] R←A÷2×B
 1 CALC IÏ 2 3 0
 ∧

During development of code which is to run in isolates, trapping of errors can make debugging
rather tedious. Fortunately, we can set the onerror option to debug:

 isolate.Config 'onerror' 'debug' ⍝ Returns previous value
signal

 isolate.Reset 0 ⍝ All processes must be restarted6
Reset: 2 isolates, 6 processes

 1 CALC IÏ 2 3 0

… at this point the APL session will hang indefinitely, due to one of the isolate processes being
suspended with an error. Selecting debug overrides the runtime option, forcing the use of
the full development environment to host isolate processes. The session caption for failed
sessions should have been changed to make it easy to identify which session to select. This is a
completely normal Dyalog APL development session: if you wish to resume normal operations
after you have corrected the error, you must take care not to cut the stack back past your
function (or if you do, try to carefully trace back into it). Ideally, you should fix your problem
and continue execution of your function in such a way that it returns a result. If everything
comes unstuck, return to the main session and call (isolate.Reset 0) again; this will
terminate all the processes.

6 A reset is necessary after most configuration changes, because isolate processes need to be restarted
in order to pick up the new configuration.

 Parallel Language Features 15

We can return to the client session and see that the result has arrived:

0.25 0.1666666667 99

Of course, you should ensure that any code changes you make to your own application code
are saved in your source code repository before you return control to the isolate framework.

 Parallel Language Features 16

5 Calling Back from Isolates

In all the examples we have seen so far, we have issued calls from the main process into
isolates – either to persistent isolates created using ø, or to temporary isolates created using
one of the operators like IÏ.

5.1 Calling Back to the Parent
Sometimes, there are resources which it is impractical to copy to into each isolate, either
because they change frequently and all isolates need to share the values in real time, or
because the cost of replicating the resource make it impractical. For example, if the main
process has an open database connection, there might be good reasons for isolates to call
back and share that connection (or current transaction), rather than making a new database
connection from each isolate.

For code running in an isolate, the special ## (parent) is a reference to the root namespace of
the initiating process, and any reference to the contents of ## represent a call back to the
main process. In the APL model, call-backs are not enabled by default, because there is
significant overhead in establishing the additional communications channel that is required.

The listen property is used to enable callbacks:

 isolate.Config 'listen' 1 ⍝ Enable callbacks
0
 isolate.Reset 0 ⍝ Restart all services after config change
0 isolates, 4 processes reset

Imagine that we have a shared counter that all isolates need to increment from time to time:

 COUNTER←1
 {##.COUNTER←##.COUNTER+⍵} IÏ 1 1 1 1
2 2 2 2
 COUNTER
2

Our intention was that each parallel function would have incremented the counter once, but
something went wrong. The reason is that each expression makes two references to
##.COUNTER – first to read it and then to set it, after adding 1. When the example runs, it is
almost guaranteed that all four isolate processes will manage to make the read request before
any one of them manages to perform an update. Therefore, each isolate sees a value of 1,
adds one, and all four of them set COUNTER to 2. We need a way to ensure that each function
manages to read AND update COUNTER as an atomic operation, without giving the other
isolates a chance to interfere.

It is not possible to use tokens (⎕TPUT / ⎕TGET), or :Hold control structures to achieve this,
because the isolates are separate processes and do not share token pools or any other state
with each other.

The simplest way to implement this kind of transaction is to use a server-side function, similar
to a stored procedure in most SQL database servers. Call-backs to the main process are
guaranteed to run sequentially. The same is true if several threads in the main process make

 Parallel Language Features 17

calls to the same isolate: if there are simultaneous calls they will be queued and executed one
by one, to avoid race conditions.

Let us define a function in the root namespace to modify COUNTER:

 ∇ R←INCR X
[1] COUNTER←COUNTER+X
[2] R←COUNTER
 ∇

Now, we can make atomic updates:

 COUNTER←1
 {##.INCR ⍵} IÏ 1 1 1 1
2 5 3 4
 COUNTER
5

Note that the result illustrates that the four call-backs were not run in order from left to right:
the order of execution of isolates is not guaranteed – they run completely independently. The
important thing is that COUNTER was incremented four times – as expected.

5.2 Call-backs versus Interrupts
Beware: In version 14.0, Dyalog APL does not provide a way to select which thread is
interrupted. If you have enabled call-backs using the “listen” option (see section 5.1), and you
interrupt execution, there is a risk that you will interrupt a call-back, or terminate the listening
thread while it is waiting for the next call-back. In version 14.1 the listening thread is immune
to weak interrupts, but if you issue a strong interrupt, you will also run the risk of interrupting
the listener.

If you unintentionally interrupt the listener, you will see warnings displayed in the session,
similar to the ones coloured blue in the following. The first one is a warning from the listener
that it is shutting down, and the second message tells us that the listener is being restarted:

 is.⎕DL 6
Weak interrupt received, RPC Server shutting down
6.011

 DIVISOR←10
 {⍵÷##.DIVISOR} IÏ 1 2 3
ISOLATE: Callback server restarted
0.1 0.2 0.3

We can see from the above that the interrupt failed to stop the first function call, but instead
it caused the listener to shut down. If you issue weak interrupts, you should never see this
message in version 14.1.

5.3 Calling From One Isolate to Another
The full primitive implementation may allow calls to be chained, so that one isolate can call
another by going via the parent process, as in:

 is1.(##.is2.(⎕DL 1))

 Parallel Language Features 18

However, this is not currently supported, and it is not clear that the APL-coded model will ever
be able to support it. A primitive implementation may eventually also allow an isolate to
create child isolates and make calls to them, but this is also unsupported in the model.

Note that, even when calls between isolates become enabled, it will probably not be possible
for one isolate to contain a reference to another – references cannot cross isolate boundaries.

 Parallel Language Features 19

6 Isolate Processes

By default, the framework will create one process for each processor that is available on your
machine. As isolates are created, they will initially be allocated to free processes. If no free
processes are available, each new isolate will be allocated to the process which is managing
the smallest number of isolates. If several processes have the same number of isolates and
some of them contain “busy” isolates, the least busy process will be selected to host the new
isolate.

6.1 isolate.State
The function isolate.State can be used to monitor isolate allocation and activity:

 isolates←ø¨6⍴⊂''
 isolate.State ''
 Host Port Isolates Busy
 ---- ---- -------- ----
 localhost 7052 2 0
 7053 2 0
 7054 1 0
 7055 1 0

We can see from the above that we have 4 processes available, each listening on a separate
port, and that the two first ones have been allocated two isolates each. The “Busy” column
shows how many isolates are currently running code:

 z←⎕DL IÏ ⍳6 ⋄ ⎕DL 3
 isolate.State ''
 Host Port Isolates Busy
 ---- ---- -------- ----
 localhost 7052 2 0
 7053 3 1
 7054 2 1
 7055 2 1

We created another six isolates for a total of 12, so each processor had 3 each – but the
temporary isolates are disappearing as each delay completes. After 3 seconds, 9 isolates
remain, as documented above.

6.2 Limiting the number of Isolates per Process
By default, several isolates may share a single APL process. If you are running code with no
side-effects, the only problem will be that two or more isolates share a single operating
system thread and the workspace that is available within it – which may limit performance.

However, if your isolates use component files, shared libraries or other “per process” system
resources, these will now be shared – not with the main process, but between “random”
isolates that happen to share the same process. This may cause problems unless your code is
written to deal with that situation.

 Parallel Language Features 20

If your code needs to run in a single process, you should set the isolates configuration
option to 1. Obviously, imposing a limit creates a risk that you will run out of processes:

 isolate.Config 'isolates' 1
99
 isolates←ø¨4⍴⊂'' ⍝ OK to create four isolates

 fifth←ø ''
ISOLATE ERROR: All processes are in use
 fifth←ø ''
 ∧

See the next section for information on how to increase the number of processes.

6.3 Changing the number of Processes
By default, the system detects the number of processes available, and sets the processors
option to this value. The processes option, which controls the number of processes to start
per processor, defaults to 1. The default values are expected to give a reasonable utilisation
of multi-core hardware for fairly CPU-intensive isolates. However, depending on whether your
application is memory- or CPU-bound, or limited by file or network I/O, the “best” choice
might be very different. It might make sense to run only one or two processes – or dozens –
depending on what your isolates are going to be doing.

You can set these two options to any integer value – and then you must call
isolate.Reset in order to get the new settings to take effect. Note that in the current
version, every one of the (processors×processes) APL tasks are started as soon as the
isolate framework is initialised or reset. A potential future enhancement would be to allow
dynamic allocation.

 isolate.Config 'processors' 3
4
 isolate.Config 'processes' 2
1
 isolate.Reset 0 ⍝ Get new config to take effect
Reset: 6 isolates, 4 processes

 z←⎕DL IÏ ⍳6 ⋄ ⎕DL 2
 isolate.State ''
 Host Port Isolates Busy
 ---- ---- -------- ----
 localhost 7052 0 0
 7053 0 0
 7054 0 0
 7055 1 1
 7056 1 1
 7057 1 1

6.4 Running Isolate Servers
By default, isolates are hosted in processes that are started on your local machine, according
to the processors and processes options described in the previous section. If you have
processing capacity available on other machines, you can load the isolate workspace on
these machines and use the function isolate.StartServer to turn the current APL
session into an isolate server which can be used to run slave processes.

 Parallel Language Features 21

The right argument to StartServer is a list of access rules, separated by commas, which
control which client machines will be allowed to connect to the server. If the right argument is
empty, the server will only be usable from clients on the same machine.

Each rule is of the form 'keyword=value'. At the moment, the only keyword which is
accepted is “ip”. The value must be a full or partial IP address. If the address is a prefix of the
address of a client, the connection will be accepted. For example, 'ip=192.168.1' would
allow all machines with an address starting with 192.168.1 to connect.

The number of processes started is sensitive to the same option settings as for local use:

 isolate.Config 'Processors' 8
4
 isolate.StartServer 'ip=192.168.1,ip=192.168.6'
 Machine Name: MortensYoga
 IP Ports: 7052 7053 7054 7055 7056 7057 7058 7059

 Enter the following in the client session:

 #.isolate.AddServer 'MortensYoga' (7052-⎕IO-⍳8)

 Full IP address list:
 IPv4 192.168.193.1 IPv6 [fe80::545f:770f:dab:368b]
 192.168.247.1 [fe80::ccbd:aa34:3cfb:6e24]

You can use (isolate.Reset 0) to shut the server down again – or simply end the
session.

6.5 Using an Isolate Server
As suggested in the output of the StartServer function, you need to call AddServer to
make a remote server available as a host for new isolates. The argument is a 2-element vector
containing the IP address of the server, and the range of port numbers that is exposing. For
example:

 #.isolate.AddServer 'calcsrv' (7052 7053)
 Host Port Isolates Busy
 ---- ---- -------- ----
 calcsrv 7052 0 0
 7053 0 0

If a server that you are using is shut down, or the connection to it is lost, errors can occur
without warning if you continue using isolates hosted on a server which is no longer
accessible. You may see failures within the isolate infrastructure, along the lines of:

 ⎕DL IÏ ⍳4
ISOLATE: Connection to calcsrv:7053 failed: 1111
ERR_CONNECT_DATA /* Could not connect to host data port */
 ⎕DL IÏ ⍳4
 ∧

The same kind of errors may occur if your local isolate servers are terminated for any reason,
but this is much less likely than the loss of a network connection.

6.6 Combining Local and Remote Isolates
As we have seen: if you start creating isolates without calling AddServer, local processes
are started. If you call AddServer after the first use of isolates, the new processes will be

 Parallel Language Features 22

added to those which are already accessible. You may also explicitly add local processes using
AddServer with an empty vector as the right argument:

 #.isolate.AddServer ''
 Host Port Isolates Busy
 ---- ---- -------- ----
 calcsrv 7052 0 0
 7053 0 0
 localhost 7052 0 0
 7053 0 0

In the above example, the calcsrv (which we added in the previous section) - and the local
machine both have 2 processes. Both machines are using the same port numbers (on
different IP addresses).

The function RemoveServer can be used to remove a server from your list of remote
servers. Note that this function will allow you to remove processes which are hosting
persistent isolates. If you subsequently attempt to use such isolates, an error will result:

 is←ø '' ⍝ Created on calcsrv
 #.isolate.RemoveServer 'calcsrv'
 Host Port Isolates Busy
 ---- ---- -------- ----
 localhost 7052 0 0
 7053 0 0

 is.(2+2)
ISOLATE: No longer accessible
 is.(2+2)
 ∧

 Parallel Language Features 23

7 Differences between Namespaces and Isolates

This chapter drills down on some of the less obvious differences between isolates and
namespaces that may be encountered when converting existing code to make use of isolates.

7.1 File Ties are not shared with Isolates
Unlike namespaces, isolates reside in separate processes, so they do not share any resources
that belong to the current process, such as file ties, loaded libraries, TCP sockets, etc. The
following example illustrates the issue using component file ties:

 ns←⎕NS '' ⋄ is←ø '' ⍝ A namespace and an isolate

 'file1' ⎕fstie 0 ⍝ Tie a file in main process
1
 'file2' ns.⎕fstie 0 ⍝ Tie a file “in” a namespace
2
 'file1' is.⎕fstie 0 ⍝ Tie first file in the isolate
1

 ns.(⎕fnames,⍪⎕fnums) ⍝ root and ns are in the same process
file1 1
file2 2

 is.(⎕fnames,⍪⎕fnums) ⍝ isolate is a separate process
file1 1

7.2 Namespace “Refs” and Isolates
In addition to the resources described in section 7.1, it is also not possible to share pointers
such as namespace refs with an isolate. The process of passing the reference to an isolate,
either through assignment or as an argument to a function, will cause the referenced space to
be copied.

 ns←⎕NS '' ⋄ ns.Value←42 ⍝ Create namespace containing variable
 is←ø '' ⍝ Create an isolate
 otherns←⎕NS '' ⍝ Create a 2nd namespace
 otherns.ns←ns ⍝ Within same process: create a ref to ns
 is.ns←ns ⍝ Separate processes: ns is copied

 ns.Value←43 ⍝ Update value
 otherns.ns.Value ⍝ Same process: shared value
43
 is.ns.Value ⍝ Separate process: copied value
42

 Parallel Language Features 24

7.3 Classes versus Isolates
As mentioned in 7.2, namespace references cannot be shared, data will be serialised and
copied when passed between isolates. Classes, Interfaces and Instances cannot be serialised,
so they cannot even be copied:

 is.MyClass←MyClass
ISOLATE: Transmission failure: Object oriented namespace cannot
be serialised

You can fix the source of a class in an isolate using ⎕FIX, but beware: if you execute an
expression that returns a class or an instance, this will fail because that result cannot be
passed back:

FUTURE ERROR: 11: ISOLATE ERROR: Result cannot be returned from
isolate
 is.⎕FIX ⎕SRC MyClass
 ∧

The solution is to ensure that you return a result which is not a class, instance or interface. For
example:

 is.{≢⎕SRC ⎕FIX ⍵}⎕SRC MyClass ⍝ Count lines of source
21

7.4 Unexpected output of Shy Results
Futures are not currently able to preserve the shy nature of results – any shy result which is
returned as a future becomes non-shy:

 ns←⎕NS '' ⍝ Create an empty isolate
 is←isolate.New '' ⍝ Create an empty isolate
 ns.(X←10?10) ⍝ Shy result in ns: output suppressed
 is.(X←10?10) ⍝ With an isolate, this produces output
6 9 3 4 8 2 7 1 5 10

The parenthesised assignment within a namespace in the current process is shy and does not
produce any output; when the same assignment is made within an isolate, a future is returned
and the result of the assignment is displayed in the session.

7.5 Function calls into Isolates must return results
Due to the way that calls into isolates are implemented as remote procedure calls that return
futures, any expression executed in an isolate MUST return a result, or a FUTURE ERROR will
be signalled.

Note that when an error is signalled because there is no result, or because the result is a class,
function or anything else that cannot be returned, the expression may well have been
executed.

 Parallel Language Features 25

8 Option Settings

The isolate namespace has a number of configuration options which control how isolates are
started and managed. Options are queried and set using the Config function, for example:

 isolate.Config 'workspace' 'c:\temp\myapp\myapp.dws'
c:\temp\myapp\myapp.dws

Most of the options will only take effect following a call to (isolate.Reset 0) in order to
shut down all existing servers and re-initialise the system.

An empty argument to the Config function gives a list of all current settings:

 isolate.Config ''
 drc #
 homeport 7051
 homeportmax 7151
 isolates 99
 listen 0
 maxws 64000
 onerror signal
 processes 1
 processors 4
 protocol IPv4
 runtime 1
 workspace isolate

The current set of supported options is listed below.

Option Name Default Description

drc # Location of CONGA namespace to use

homeport 7051 The lowest port number that will be used

homeportmax 7151 The highest port number to try listening on

isolates 99 Number or isolates allowed per process

listen 0 1 to allow isolates to issue callbacks to parent process

maxws '64000' By default, uses the same setting as the current APL session

onerror 'signal' Signal errors to the line waiting for results

processes 1 The number of processes to start per process

processors 4 Number of processors (under Windows, determined
automatically)

runtime 1 Whether to run isolates using the runtime engine

workspace 'isolate' Workspace to load when starting new isolates

 Parallel Language Features 26

8.1 drc
This option can be used to specify a non-default location of the Conga DRC namespace, which
must be present for isolates to work. If drc is # (the default) we check to see if #.DRC exists
and copy DRC from the CONGA workspace (which must be on the workspace path or in the
same folder as the APL executable) if it not. Otherwise drc must be a reference to an existing
DRC namespace.

8.2 homeport and homeportmax
Each isolate - and if the listen option is set to 1 the main process as well – will open a
listening TCP port in order to receive commands to be executed. These two options control
the first and last port number that will be attempted used. The system will use the configured
number for the main process listener, and the next (processors×processes) numbers
for the isolates.

If the creation of the main process listener fails, the port number will be incremented by
(1+processors×processes) and the listener creation will be retried – up to the upper
limit set by homeportmax.

8.3 isolates
This parameter makes it possible to set a cap on the number of isolates that each available
process is allowed to contain (within a process, separate APL threads will be used to execute
code for different isolates). By default, the limit is 99 – but if you are running isolate code
which needs to have complete control of process resources such as component files or shared
libraries, you can set this value to 1.

8.4 listen
When this option is set to 1, a listening thread is launched in the main APL process, and the
isolate will be able to call back into the root of the main workspace by referring to the symbol
##. The default is 0 because there cost of creating isolates is significantly increased when an
additional connection is required. The cost of using isolates, once they have been created, is
not affected.

8.5 maxws
If you want to start processes using a different workspace size than your main process, you
can set this option before processes are launched. The option value is a string which has to
follow the same rules as the maxws environment variable or registry entry for APL.

8.6 onerror
This option controls the handling of errors that occur in expressions that are executed in
isolates. Allowed values are:

signal: a FUTURE ERROR will be signalled in an expression which depends on the result of
the expression.

debug: do not trap errors in the isolate: let the isolate server suspend. This will force the use
of the full development environment for isolate processes, even if the runtime option is set
to 1.

 Parallel Language Features 27

8.7 processors
The number of processors available for use for isolate servers (default determined
automatically using 1111⌶⍬).

8.8 processes
The number of processes that will be started per available processor (default 1).

8.9 workspace
This specifies the name of a workspace to be used at start-up by the processes which will host
isolates. By default, it is set to “isolate”, and the system will use the distributed workspace
by that name. Note that, if you use the runtime interpreter, you must either use the full path
to the workspace or place the workspace in the same folder as the Dyalog executable, or the
runtime interpreter will not be able to find it.

See section 9.2 for details on how to create a workspace which contains your own application
code, and use it as the host.

8.10 runtime
Controls whether the runtime interpreter or the full development system is used to run
isolate server processes. The default is 1 (use the runtime), which gives faster startup of
isolates and no visible “clutter” caused by additional sessions. This mechanism works by
adding “rt” to the end of the name of the executable that is running the current process. If
you are using a bound executable, it should always be set to 0.

Note: The development system will always be used if the onerror option is set to debug,
regardless of the runtime setting.

 Parallel Language Features 28

9 Further Reading

9.1 Tools and Samples on GitHub
The Parallel folder in the Dyalog GitHub repository at http://github.com/Dyalog/Samples/
contains tools that can be used to extend the functionality provided by the isolate namespace,
with code examples showing how to use the tools.

At the time that this document was written, the samples included:

PEACH – an enhanced implementation of Parallel Each which uses a fixed set of isolates and
keeps them busy (rather than creating a new empty isolate for each item of the arguments),
and displays an optional progress bar for the computation.

IIPageStats – an example which computes letter frequencies on a collection of
newspaper web pages in parallel (using PEACH).

See the README.md files in the repository for more information.

9.2 Serving Isolates from Your own Application Workspace
If your isolate is going to need all the code that is in your application workspace, the most
efficient way to start isolate processes may be to load that workspace. To set this up, you
need copy the isolate namespace into your workspace, also either include the DRC
namespace from the Conga workspace, or place the Conga workspace in a location where the
expression ('DRC' ⎕CY 'ws\conga') will succeed during start-up.

The latent expression (⎕LX) in your workspace should invoke the isoStart function before
your application is started. In a slave process, the isoStart function will start serving calls,
but in a normal process it will exit immediately and allow your application to start. For
example:

 ⎕LX←'isolate.ynys.isoStart ⍬ ⋄ Run'

Note: If your application is shipped as a bound executable under Microsoft Windows, you
must set the workspace property to an empty character vector (''), in order to avoid
attempts to load the workspace.

The following example function is an application which can both run as a bound executable
and a normal workspace.

http://github.com/Dyalog/Samples/Parallel

 Parallel Language Features 29

 ∇ Run;iss;t;F;⎕TRAP
[1] ⎕TRAP←(999 'C' '→ERR')(0 'E' '#.LOG') ⍝ Trap & report all
errors
[2]
[3] →isolate.isSlave⍴0 ⍝ Exit if this is a slave process
[4]
[5] {}isolate.Reset 0 ⍝ Nor any zombie isolates
[6]
[7] :If ''≡⎕WSID
[8] ⍝ Looks like we are a bound executable
[9] {}isolate.Config'runtime' 0 ⍝ do not add "rt" to exe name
[10] {}isolate.Config'workspace' '' ⍝ no workspace to load
[11] :EndIf
[12]
[13] iss←isolate.New¨'' '' '' ⍝ Make 3 isolates
[14] t←iss.⎕DL 1 1 1 ⍝ Do 3 short delays
[15] 'F'⎕WC'Form'(⍕t) ⍝ An ugly form with results in caption
[16] 'F.T'⎕WC'Text'(⍕,'.'⎕WG'APLVersion')(50 50) ⍝ Display version
[17] ⎕DQ'F'
[18] →0
[19]
[20] ERR:⎕TRAP←0 'S' ⍝ Trap no more errors
[21] 'F'⎕WC'Form' 'Error' ⍝ Create a form
[22] 'F.T'⎕WC'Text'(⍕⍪#.DMSI)(50 50) ⍝ Put ⎕DM and ⎕SI in the body
[23] ⎕DQ'F'
[24] →0
 ∇

The companion function LOG which collects information about errors in
the environment where they occur is defined as follows.

 ∇ LOG
[1] #.DMSI←⎕DM,⎕SI
[2] ⎕SIGNAL 999
 ∇

9.3 Topics Yet to Come
The following sample is under development, contact support@dyalog.com if you need it:

- How to run an isolate server as a Windows Service.

mailto:support@dyalog.com

 Parallel Language Features 30

Appendix A: Function and Operator Reference

A.1 Models of Future Primitives
Each syntax block shows the model syntax on the left. On the right, in the first row the
proposed primitive symbol and in the 2nd row the alternative name exposed by the isolate
namespace:

isolate←ø init r←¤⍵
 isolate.New ⍵

Creates an isolate. The right argument can take one of the following forms:

Right argument Meaning

'' Empty vector: empty isolate

'wsname' A simple, non-empty character vector is interpreted as a workspace name, the
workspace is copied to create the isolate

'fn' 'var' A vector of names is used to create an isolate containing named objects from
current workspace

Namespace
reference

Creates clone of argument space

The result is a reference to the isolate which has been created.

f II f∥
 isolate.ll

Model of (f∥): A function derived from f, which will create an isolate empty except for a copy
of the operand function, start execution of the function and immediately returns a future.

f IÏX f∥¨
 isolate.llEach

Model of (f∥¨): A function derived from f, which will create one isolate containing a copy of
f for each required invocation (using the same rules as for f¨) of f, start all the function calls,
and return an array of futures of the same shape as would be returned by f¨.

f o_II ∘.(f∥)
 isolate.llOuter

Model of ∘.(f∥): A function derived from f, which will create one isolate containing a copy
of f for each required invocation (using the same rules as for ∘.f) of f, start all the function
calls, and return an array of futures of the same shape as would be returned by ∘.f.

 Parallel Language Features 31

f IIö ranks f∥⍤ranks
 isolate.llRank

Model of f∥⍤: A function derived from f, which will create one isolate containing a copy of f
for each required invocation (using the same rules as for f⍤ranks) of f, start all the function
calls, and return an array of futures of the same shape as the outer shape of the rank
invocation.

Note that, in the current model, the result is missing the final mix that would be performed by
the rank operator

 ⍴⎕←(,⍤ 2)2 3 4⍴⍳12
1 2 3 4 5 6 7 8 9 10 11 12
1 2 3 4 5 6 7 8 9 10 11 12
2 12

 ⍴⎕←(, IIö 2)2 3 4⍴⍳12
 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12
2

The reason for the missing mix is so that an array of futures can be returned. If the mix was
included, the derived function would be forced to block in order to know the shapes of the
individual results.

f IIÐ f∥⌸
 isolate.llKey

Model of f∥⌸: A function derived from f, which will create one isolate containing a copy of f
for each required invocation (using the same rules as for f⌸) of f, start all the function calls,
and return an array of futures of the same shape as the outer shape of the key invocation.

As with the model of rank, in the current model, the result is missing the final mix, in order to
avoid blocking:

 {⍺ ⍵}⌸1 1 1 2 2 3 3 3
1 1 2 3
2 4 5
3 6 7 8

]disp {⍺ ⍵} IIÐ 1 1 1 2 2 3 3 3
┌→────────┬───────┬─────────┐
│┌→┬─────┐│┌→┬───┐│┌→┬─────┐│
││1│1 2 3│││2│4 5│││3│6 7 8││
│└─┴~───→┘│└─┴~─→┘│└─┴~───→┘│
└────────→┴──────→┴────────→┘

A.2 Isolate Server Management

r←AddServer address ports

Prepare to use an isolate server which must already be running on a machine with the
specified IP address and has started isolate processes that are listening on the specified port
numbers. The result of State after the isolate processes have been added. For example:

 Parallel Language Features 32

 #.isolate.AddServer 'calcsrv' (7052 7053)
 Host Port Isolates Busy
 ---- ---- -------- ----
 calcsrv 7052 0 0
 7053 0 0

An empty right argument makes local processes available:

 #.isolate.AddServer ''
 Host Port Isolates Busy
 ---- ---- -------- ----
 calcsrv 7052 0 0
 7053 0 0
 localhost 7052 0 0
 7053 0 0

r←isSlave

Returns 1 when called from within an isolate server process, else 0. This function is useful
when the same workspace is used to run the client application and the host for isolate
processes; it allows application startup code to easily determine which role it is expected to
play.

 #.isolate.isSlave
0

r←RemoveServer address

Removes a server which was added using AddServer. The result is the state after the isolate
processes have been added. For example:

 #.isolate.RemoveServer 'calcsrv'
 Host Port Isolates Busy
 ---- ---- -------- ----
 localhost 7052 0 0
 7053 0 0

An empty right argument removes local processes:

 #.isolate.RemoveServer ''
[no servers defined]

r←StartServer access

Starts an isolate server on the current machine. The right argument is a list of access rules,
separated by commas, which control which client machines will be allowed to connect to the
server. If the right argument is empty, the server will only be usable from clients on the same
machine.

Each rule is of the form 'keyword=value'. At the moment, the only keyword which is
accepted is “ip”. The value must be a full or partial IP address. If the address is a prefix of the
address of a client, the connection will be accepted. For example, 'ip=192.168.1' would
allow all machines with an address starting with 192.168.1 to connect.

 Parallel Language Features 33

It is anticipated that future versions of StartServer will support filtering on client SSL
certificates IDs, and probably also the use of an external rule file.

The function produces output containing information that should be useful when providing
arguments to the AddServer function:

 isolate.StartServer 'ip=192.168.1,ip=192.168.6'
 Machine Name: calcsrv
 IP Ports: 7052 7053

 Enter the following in the client session:

 #.isolate.AddServer 'calcsrv' (7052-⎕IO-⍳2)

 Full IP address list:
 IPv4 192.168.193.1 IPv6 [fe80::545f:770f:dab:368b]
 192.168.247.1 [fe80::ccbd:aa34:3cfb:6e24]

A.3 Configuration and Process State

r←Config property [value]

Report or set configuration options (see section 8 for details). With an empty right argument,
all current option settings are returned:

 isolate.Config ''
 drc #
 homeport 7051
 homeportmax 7151
 isolates 99
 listen 0
 maxws 64000
 onerror signal
 processes 1
 processors 4
 protocol IPv4
 runtime 1
 workspace isolate

With a right argument consisting of an option name, the current setting is returned:

 isolate.Config 'processors'
4

To set an option, follow the name with the new value. The previous setting is returned:

 isolate.Config 'processors' 8
4

r←Reset 0

Resets the isolate mechanism, shutting down any isolate processes. The right argument
currently has to be zero, additional options may be added in the future. The result is a brief
report on the activity of the function:

 isolate.Reset 0
Reset: 0 isolates, 4 processes

 Parallel Language Features 34

r←State ''

Produces a report on the current state of isolate processes. The right argument must currently
be an empty character vector:

 isolate.State ''
[not initialised]

 is←ø'' ⍝ Create an isolate: Initialises processes

 isolate.State ''
 Host Port Isolates Busy
 ---- ---- -------- ----
 localhost 7052 1 0
 7053 0 0
 7054 0 0
 7055 0 0
 7056 0 0
 7057 0 0
 7058 0 0
 7059 0 0

Following the headers, there is one row of output for each isolate process. The four columns
of output contain:

1. The host name or IP address (argument to AddServer) on which the process is
running. For readability, empty if the name is the same is the preceding row.

2. The port number that the process is listening on.
3. The number of isolates currently hosted by this process.
4. The number of isolates that are currently executing an expression.

 Parallel Language Features 35

A.4 State of Futures
The following functions all take the name of an array containing futures as the right argument,
and return information regarding the state of each item of the array:

r←Available name

Returns a Boolean array with the same shape as the variable named in the right argument:

1: The corresponding item is not a future (either it was never a future, or the computation has
succeeded).

0: The computation of the corresponding item is in progress, or has failed.

r←Failed name

Returns a Boolean array with the same shape as the variable named in the right argument:

1: The computation of the corresponding item has failed.

0: The corresponding item is not a future, is still being computed, or has completed
successfully.

r←Running name

Returns a Boolean array with the same shape as the variable named in the right argument:

1: The computation of the corresponding item is in progress.

0: The corresponding item is not a future, has failed, or has completed successfully.

r←[null] Value name

Returns and with the same shape as the variable named in the right argument. If the
computation is in process or has failed, the corresponding item of the result contains a
⎕NULL, or the optional left argument if it was provided. Otherwise, the item contains the
corresponding value from the named variable.

 Parallel Language Features 36

Appendix B: Troubleshooting

At the time that this document was written, the actual usage of isolates was essentially
limited to synthetic experiments designed to test the code, or used during the writing of the
document itself. Nonetheless, some problems were encountered; this section is a collection of
explanations and tips to help you move forward when things stop working.

If you experience that the system frequently hangs while using futures and isolates, try the
Threads|Resume all Threads menu item. Dyalog recommends that you do not have
“Threads|Pause on Error” enabled when working with the experimental parallel features.

This should no longer be an issue from version 14.1: if you still encounter hangs that you
suspect might be caused by this issue, please contact support@dyalog.com.

B.1 “Normal” Errors
The following error messages may appear during normal operations:

ISOLATE: Callback server restarted
The system detected that listening was enabled, but no listener process was running.

ISOLATE: Interrupt – continue waiting (y/n)?
An interrupt was issued while the system was waiting for isolates to produce results. You can
choose whether to issue an error for missing values, or resume waiting.

This should no longer happen in version 14.1: if you encounter this prompt in v14.1 please
contact support@dyalog.com.

ISOLATE: Transmission failure
An attempt was made to transmit an unserialisable value (such as a class or an instance) to an
isolate.

FUTURE ERROR: 11: ISOLATE ERROR: Result cannot be returned from isolate
An attempt was made to return an unserialisable value from an isolate.

B.2 Initialisation and Communication Failures
ISOLATE: Connection to address:port failed: 1111 ERR_CONNECT_DATA /* Could not
connect to host data port */
ISOLATE: Unable to connect to isolate process: PROC10584797 192.168.17.105 7052
ISOLATE: Unable to connect to started processes (attempt n of m)
FUTURE ERROR: 86: COMMUNICATIONS FAILURE 1119 ERR_CLOSED : /* Socket Closed
while receiving */

These errors are most likely when using remote isolate servers: they suggest that the ip
addresses or port numbers are not valid; the network has failed or the remote server has
been shut down or crashed after it was added. The errors could also indicate that the started

 Parallel Language Features 37

isolates are crashing immediately. A common cause of this is the inability to locate the CONGA
workspace.

Suggestions:

1) Check whether the processes are running or the network has failed
2) Try switching the ”runtime” property off to see whether any error messages are visible

Unable to create listener on port 7051
The system was unable to create a listener to receive callback requests. This probably means
there is a defunct APL process which still has the port open. Use the “netstat” command to
identify and kill it (a future enhancement to the Reset function will hopefully be able to do this
automatically).

B.3 Internal Errors
The following errors indicate serious internal logic errors, and should not occur during normal
operations:. Please report the circumstances, ideally with instructions which reproduce the
error, to the Dyalog Helpdesk:

ISOLATE: Connection OK but incorrect handshake response received
ISOLATE: New process did not respond to handshake
ISOLATE: Unknown command
ISOLATE: Internal error

	1 Introduction
	1.1 Release Notes

	2 Philosophical Preamble
	2.1 APL is a Parallel Notation
	2.2 Automatic Parallelisation
	2.3 Explicit Parallelisation

	3 Introducing Futures and Isolates
	3.1 Isolates
	3.2 Futures
	3.3 Parallel Operator

	4 The Version 14.x Implementation
	4.1 Parallel Each
	4.2 Explicit or Persistent Isolates
	4.3 Blocking
	4.4 Errors in Asynchronous Expressions
	4.5 Tracking the Status of Asynchronous Expressions
	4.6 Interrupting Asynchronous Expressions
	4.7 Debugging Asynchronous Expressions

	5 Calling Back from Isolates
	5.1 Calling Back to the Parent
	5.2 Call-backs versus Interrupts
	5.3 Calling From One Isolate to Another

	6 Isolate Processes
	6.1 isolate.State
	6.2 Limiting the number of Isolates per Process
	6.3 Changing the number of Processes
	6.4 Running Isolate Servers
	6.5 Using an Isolate Server
	6.6 Combining Local and Remote Isolates

	7 Differences between Namespaces and Isolates
	7.1 File Ties are not shared with Isolates
	7.2 Namespace “Refs” and Isolates
	7.3 Classes versus Isolates
	7.4 Unexpected output of Shy Results
	7.5 Function calls into Isolates must return results

	8 Option Settings
	8.1 drc
	8.2 homeport and homeportmax
	8.3 isolates
	8.4 listen
	8.5 maxws
	8.6 onerror
	8.7 processors
	8.8 processes
	8.9 workspace
	8.10 runtime

	9 Further Reading
	9.1 Tools and Samples on GitHub
	9.2 Serving Isolates from Your own Application Workspace
	9.3 Topics Yet to Come

	Appendix A: Function and Operator Reference
	A.1 Models of Future Primitives
	isolate←ø init r←¤⍵ isolate.New ⍵
	f II f∥ isolate.ll
	f IÏX f∥¨ isolate.llEach
	f o_II ∘.(f∥) isolate.llOuter
	f IIö ranks f∥⍤ranks isolate.llRank
	f IIÐ f∥⌸ isolate.llKey

	A.2 Isolate Server Management
	r←AddServer address ports
	r←isSlave
	r←RemoveServer address
	r←StartServer access

	A.3 Configuration and Process State
	r←Config property [value]
	r←Reset 0
	r←State ''

	A.4 State of Futures
	r←Available name
	r←Failed name
	r←Running name
	r←[null] Value name

	Appendix B: Troubleshooting
	B.1 “Normal” Errors
	B.2 Initialisation and Communication Failures
	B.3 Internal Errors

